3.4.4. horton.grid.int1d – 1D integration algorithms

class horton.grid.int1d.Integrator1D

Bases: object

get_weights(npoint)

Return integration weights for linear grid.

__init__

x.__init__(…) initializes x; see help(type(x)) for signature

npoint_min = None

Base class for integration algorithms

class horton.grid.int1d.StubIntegrator1D

Bases: horton.grid.int1d.Integrator1D

get_weights(npoint)

Return integration weights for linear grid.

__init__

x.__init__(…) initializes x; see help(type(x)) for signature

npoint_min = 0

Ordinary integration algorithm

class horton.grid.int1d.TrapezoidIntegrator1D

Bases: horton.grid.int1d.Integrator1D

get_weights(npoint)

Return integration weights for linear grid.

__init__

x.__init__(…) initializes x; see help(type(x)) for signature

npoint_min = 2

Trapezoid rule integration algorithm

class horton.grid.int1d.CubicIntegrator1D

Bases: horton.grid.int1d.Integrator1D

get_weights(npoint)

Return integration weights for linear grid.

__init__

x.__init__(…) initializes x; see help(type(x)) for signature

npoint_min = 2

Cubic spline integration algorithm

class horton.grid.int1d.SimpsonIntegrator1D

Bases: horton.grid.int1d.Integrator1D

get_weights(npoint)

Return integration weights for linear grid.

__init__

x.__init__(…) initializes x; see help(type(x)) for signature

npoint_min = 8

Composite Simpson’s rule integration algorithm