3.3. Dumping/Loading a Hamiltonian to/from a file

HORTON supports two formats for Hamiltonians: (i) an internal binary format based on HDF5 (extension .h5) and (ii) Molpro’s FCIDUMP text format (containing FCIDUMP somewhere in the file name). The internal format is more flexible and can store Hamiltonians in various ways. The FCIDUMP format is more restricted but can be used to interface HORTON with different codes, e.g. Molpro. HORTON can also load integrals from a Gaussian log file but this is absolutely not recommended for any serious calculation.

For general information on how to load and dump data with HORTON in different data file formats, refer to Data file formats (input and output).

3.3.1. HORTON’s internal format

3.3.1.1. Dumping

You can store all of the operators in the atomic-orbital (AO) basis. For example, you can store the core energy and all the integrals in the Cholesky decomposed format:

data/examples/hamiltonian/dump_internal_ao.py

from horton import *

# Set up molecule, define basis set
# ---------------------------------
# get the XYZ file from HORTON's test data directory
fn_xyz = context.get_fn('test/water.xyz')
mol = IOData.from_file(fn_xyz)
obasis = get_gobasis(mol.coordinates, mol.numbers, 'cc-pvdz')
lf = CholeskyLinalgFactory(obasis.nbasis)

# Construct Hamiltonian
# ---------------------
mol.lf = lf
mol.kin = obasis.compute_kinetic(lf)
mol.na = obasis.compute_nuclear_attraction(mol.coordinates, mol.pseudo_numbers, lf)
mol.er = obasis.compute_electron_repulsion(lf)
mol.core_energy = compute_nucnuc(mol.coordinates, mol.pseudo_numbers)

# Write to a HDF5 file
# --------------------
mol.to_file('hamiltonian_ao.h5')

The internal format will store all attributes of the IOData instance. Note that the attributes coordinates, numbers and title were loaded from the .xyz file and will also be dumped into the internal format. Deleting an attribute, e.g. del mol.title, or adding a new attribute, e.g. mol.egg = 'spam', will result in the exclusion or the inclusion of the appropriate attribute, respectively.

In the HDF5 file, all data is stored in binary form with full precision, which means that all significant digits are written to file. In the example above, the dumped HDF5 file will have the following layout:

$ h5dump -n hamiltonian_ao.h5
HDF5 "hamiltonian.h5" {
FILE_CONTENTS {
 group      /
 dataset    /coordinates
 dataset    /core_energy
 group      /er
 dataset    /er/array
 group      /kin
 dataset    /kin/array
 group      /lf
 group      /na
 dataset    /na/array
 dataset    /numbers
 dataset    /title
 }
}

The attributes of the FCIDUMP format, one_mo, two_mo, core_energy, nelec and ms2 can also be used in the internal format. We can create an empty IOData instance and assign each of these attributes. For example,

data/examples/hamiltonian/dump_internal_ao_fcidump.py

from horton import *
import numpy as np

# Set up Neon atom, define basis set
# ----------------------------------
coordinates = np.array([[0.0, 0.0, 0.0]])
numbers = np.array([10])
obasis = get_gobasis(coordinates, numbers, 'cc-pvdz')
lf = DenseLinalgFactory(obasis.nbasis)

# Construct Hamiltonian
# ---------------------
one_mo = lf.create_two_index()
obasis.compute_kinetic(one_mo)
obasis.compute_nuclear_attraction(coordinates, numbers.astype(float), one_mo)
two_mo = obasis.compute_electron_repulsion(lf)
core_energy = compute_nucnuc(coordinates, numbers.astype(float))

# Write to a HDF5 file
# --------------------
data = IOData()
data.lf = lf
data.one_mo = one_mo
data.two_mo = two_mo
data.core_energy = core_energy
data.nelec = 10
data.ms2 = 0
data.to_file('hamiltonian_ao_fcidump.h5')

will results in the following HDF5 layout:

$ h5dump -n hamiltonian_ao_fcidump.h5
HDF5 "hamiltonian_ao_fcidump.h5" {
FILE_CONTENTS {
 group      /
 dataset    /core_energy
 group      /lf
 dataset    /ms2
 dataset    /nelec
 group      /one_mo
 dataset    /one_mo/array
 group      /two_mo
 dataset    /two_mo/array
 }
}

Note that the integrals in this example are actually stored in the AO basis (despite the _mo suffix). Read the section Preparing for a Post-Hartree-Fock calculation if you want to compute (and store) integrals in the molecular orbital (MO) basis.

3.3.1.2. Loading

You can load integrals from the HORTON’s internal format, as follows:

data/examples/hamiltonian/load_internal_ao.py

from horton import *

# Load the integrals from the file
data = IOData.from_file('hamiltonian_ao.h5')

# Access some attributes. In more realistic cases, some code follows that does a
# useful calculation.
print data.kin.nbasis

3.3.2. FCIDUMP format

3.3.2.1. Dumping

The FCIDUMP format is useful when exchanging Hamiltonians with different codes. Unlike the internal format, there are some restrictions:

  1. One-body operators (usually kinetic energy and nuclear attraction) must all be added into a single two-index object.
  2. Integrals can only be stored in a restricted (MO) basis set, i.e. using different basis sets for the alpha and beta orbitals is not possible.
  3. Two-electron integrals must be stored as a DenseFourIndex object, so the Cholesky decomposition of the ERI is not supported.

The FCIDUMP format is normally used for storing integrals in the MO basis but in the following example we will use the AO basis. Read the section Preparing for a Post-Hartree-Fock calculation if you want to compute (and store) integrals in the MO basis. The storage of integrals in AO basis in FCIDUMP format is as follows:

data/examples/hamiltonian/dump_fcidump_ao.py

from horton import *
import numpy as np

# Set up Neon dimer, define basis set
# -----------------------------------
coordinates = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 5.0]])
numbers = np.array([10, 10])
obasis = get_gobasis(coordinates, numbers, 'cc-pvdz')
lf = DenseLinalgFactory(obasis.nbasis)

# Construct Hamiltonian
# ---------------------
# The one-body operator is first created and then the kinetic energy and
# nuclear attraction integrals are added in-place.
one_mo = lf.create_two_index()
obasis.compute_kinetic(one_mo)
obasis.compute_nuclear_attraction(coordinates, numbers.astype(float), one_mo)
two_mo = obasis.compute_electron_repulsion(lf)
core_energy = compute_nucnuc(coordinates, numbers.astype(float))

# Write to a HDF5 file
# --------------------
data = IOData(one_mo=one_mo, two_mo=two_mo, core_energy=core_energy, nelec=20, ms2=0)
data.to_file('hamiltonian_ao.FCIDUMP')

In this example, we set the IOData attributes by using keyword arguments in the constructor. The file hamiltonian_ao.FCIDUMP will contain the following:

 &FCI NORB=28,NELEC=20,MS2=0,
  ORBSYM= 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
  ISYM=1
 &END
 5.9786161694613265e+00    1    1    1    1
-1.0433683639500952e+00    2    1    1    1
 1.9823368119430076e-01    2    1    2    1
 6.1978840317716133e-01    2    2    1    1
.
.
.
-1.4611205008249136e+01   27   27    0    0
-8.5804159203863803e-12   28   14    0    0
-1.4611205008249140e+01   28   28    0    0
 2.0000000000000000e+01    0    0    0    0

This file is divided into two blocks. The first block (between &FCI and &END) contains system-specific information:

NORB:number of orbitals/basis functions
NELEC:number of electrons
MS2:spin projection
ORBSYM:irreducible representation of each orbital
ISYM:total symmetry of the wavefunction

The second block (after &END) contains the one- and two-electron integrals and the core energy in that order:

  1. All symmetry-unique elements of the two-electron integrals are listed, where the first column is the value of the integral, followed by the orbital indices. Note that the orbital indices start from one and that the orbital indices (i j k l) in an FCIDUMP file are written in chemists’ notation,
\[(ij\vert kl) = \langle ik \vert jl \rangle = \int \phi_i^*(\mathbf{x}_1) \phi_k^*(\mathbf{x}_2) \frac{1}{r_{12}} \phi_j(\mathbf{x}_1) \phi_l(\mathbf{x}_2) d\mathbf{x}_1 d\mathbf{x}_2\]
  1. All symmetry-unique elements of the one-electron integrals are listed, where the first column is the value of the integral, followed by the orbital indices. Note that the last two columns contain zeros.
  2. Core energy (for instance, the nuclear repulsion term, etc.) is written on the last line with all orbital indices equal 0.

If the value of an integral is zero, the corresponding line is not included in the the FCIDUMP file. It’s important to note that HORTON does not (yet) support geometric symmetries, so all the orbitals will be assigned a symmetry label 1, which corresponds to the point group C1 in the FCIDUMP format.

3.3.2.2. Loading

You can load integrals, stored in an FCIDUMP file, as follows:

data/examples/hamiltonian/load_fcidump_ao.py

from horton import *

# Load the integrals from the file
data = IOData.from_file('hamiltonian_ao.FCIDUMP')

# Access some attributes. In more realistic cases, some code follows that does a
# useful calculation.
print data.core_energy
print data.one_mo.get_element(0, 0)