3.5.4. horton.grid.int1d
– 1D integration algorithms¶
-
class
horton.grid.int1d.
Integrator1D
¶ Bases:
object
-
get_weights
(npoint)¶ Return integration weights for linear grid.
-
__init__
¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min
= None¶ Base class for integration algorithms
-
-
class
horton.grid.int1d.
StubIntegrator1D
¶ Bases:
horton.grid.int1d.Integrator1D
-
get_weights
(npoint)¶ Return integration weights for linear grid.
-
__init__
¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min
= 0¶ Ordinary integration algorithm
-
-
class
horton.grid.int1d.
TrapezoidIntegrator1D
¶ Bases:
horton.grid.int1d.Integrator1D
-
get_weights
(npoint)¶ Return integration weights for linear grid.
-
__init__
¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min
= 2¶ Trapezoid rule integration algorithm
-
-
class
horton.grid.int1d.
CubicIntegrator1D
¶ Bases:
horton.grid.int1d.Integrator1D
-
get_weights
(npoint)¶ Return integration weights for linear grid.
-
__init__
¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min
= 2¶ Cubic spline integration algorithm
-
-
class
horton.grid.int1d.
SimpsonIntegrator1D
¶ Bases:
horton.grid.int1d.Integrator1D
-
get_weights
(npoint)¶ Return integration weights for linear grid.
-
__init__
¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min
= 8¶ Composite Simpson’s rule integration algorithm
-