3.3.12. horton/gbasis/ints.h
– Evaluation of integrals of Gaussian basis functions¶
- class
Inherits from GBCalculator
Subclassed by GB2AttractionIntegral, GB2KineticIntegral, GB2MomentIntegral, GB2OverlapIntegral
Public Functions
-
GB2Integral::
GB2Integral
(long max_shell_type)¶
-
void
GB2Integral::
reset
(long shell_type0, long shell_type1, const double *r0, const double *r1)¶
-
virtual void
GB2Integral::
add
(double coeff, double alpha0, double alpha1, const double *scales0, const double *scales1)¶
= 0
-
void
GB2Integral::
cart_to_pure
()¶
-
const long
GB2Integral::
get_shell_type0
() const¶
-
const long
GB2Integral::
get_shell_type1
() const¶
-
- class
- #include <ints.h>
Compute the overlap integrals in a Gaussian orbital basis.
Inherits from GB2Integral
- class
- #include <ints.h>
Compute the kinetic integrals in a Gaussian orbital basis.
Inherits from GB2Integral
- class
- #include <ints.h>
Compute the nuclear attraction integrals in a Gaussian orbital basis.
Inherits from GB2Integral
Subclassed by GB2ErfAttractionIntegral, GB2GaussAttractionIntegral, GB2NuclearAttractionIntegral
Public Functions
-
GB2AttractionIntegral::
GB2AttractionIntegral
(long max_shell_type, double *charges, double *centers, long ncharge)¶ Initialize a GB2AttractionIntegral object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
-
GB2AttractionIntegral::
~GB2AttractionIntegral
()¶
-
void
GB2AttractionIntegral::
add
(double coeff, double alpha0, double alpha1, const double *scales0, const double *scales1)¶ Add results for a combination of Cartesian primitive shells to the work array.
- Parameters
coeff
-Product of the contraction coefficients of the four primitives.
alpha0
-The exponent of primitive shell 0.
alpha1
-The exponent of primitive shell 1.
scales0
-The normalization prefactors for basis functions in primitive shell 0
scales1
-The normalization prefactors for basis functions in primitive shell 1
-
virtual void
GB2AttractionIntegral::
laplace_of_potential
(double gamma, double arg, long mmax, double *output)¶
= 0 Evaluate the Laplace transform of the the potential applied to nuclear attraction terms.
For theoretical details and the precise definition of the Laplace transform, we refer to the following paper:
Ahlrichs, R. A simple algebraic derivation of the Obara-Saika scheme for general two-electron interaction potentials. Phys. Chem. Chem. Phys. 8, 3072–3077 (2006). 10.1039/B605188J
For the general definition of this transform, see Eq. (8) in the reference above. Section 5 contains solutions of the Laplace transform for several popular cases.
- Parameters
gamma
-Sum of the exponents of the two gaussian functions involved in the integral. Similar to the first term in Eq. (3) in Ahlrichs’ paper.
arg
-Rescaled distance between the two centers obtained from the application of the Gaussian product theorem. Equivalent to Eq. (5) in Ahlrichs’ paper.
mmax
-Maximum derivative of the Laplace transform to be considered.
output
-Output array. The size must be at least mmax + 1.
Private Members
-
double *
GB2AttractionIntegral::
charges
¶ Array with values of the nuclear charges.
-
double *
GB2AttractionIntegral::
centers
¶ The centers where the charges are located.
-
long
GB2AttractionIntegral::
ncharge
¶ Number of nuclear charges.
-
double *
GB2AttractionIntegral::
work_g0
¶ Temporary array to store intermediate results.
-
double *
GB2AttractionIntegral::
work_g1
¶ Temporary array to store intermediate results.
-
double *
GB2AttractionIntegral::
work_g2
¶ Temporary array to store intermediate results.
-
double *
GB2AttractionIntegral::
work_boys
¶ Temporary array to store the laplace of the interaction potential.
-
- class
- #include <ints.h>
Nuclear Electron Attraction two-center integrals.
The potential is 1/r.
Inherits from GB2AttractionIntegral
Public Functions
-
GB2NuclearAttractionIntegral::
GB2NuclearAttractionIntegral
(long max_shell_type, double *charges, double *centers, long ncharge)¶ Initialize a GB2NuclearAttractionIntegral object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
charges
-Array with values of the charges.
centers
-The centers [[C1_x, C1_y, C1_z],[…],] around which the moment integrals are computed.
ncharge
-Number of nuclear charges.
-
void
GB2NuclearAttractionIntegral::
laplace_of_potential
(double gamma, double arg, long mmax, double *output)¶ Evaluate the Laplace transform of the ordinary Coulomb potential.
See Eq. (39) in Ahlrichs’ paper. This is basically a rescaled Boys function.
See base class for more details.
-
- class
- #include <ints.h>
Short-range electron repulsion four-center integrals.
The potential is erf(mu*r)/r.
Inherits from GB2AttractionIntegral
Public Functions
-
GB2ErfAttractionIntegral::
GB2ErfAttractionIntegral
(long max_shell_type, double *charges, double *centers, long ncharge, double mu)¶ Initialize a GB2ErfAttractionIntegral object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
charges
-Array with values of the charges.
centers
-The centers [[C1_x, C1_y, C1_z],[…],] around which the moment integrals are computed.
ncharge
-Number of nuclear charges.
mu
-The range-separation parameter.
-
void
GB2ErfAttractionIntegral::
laplace_of_potential
(double gamma, double arg, long mmax, double *output)¶ Evaluate the Laplace transform of the long-range Coulomb potential. (The short-range part is damped away using an error function.) See (52) in Ahlrichs’ paper.
See base class for more details.
-
const double
GB2ErfAttractionIntegral::
get_mu
() const¶ The range-separation parameter.
Private Members
-
double
GB2ErfAttractionIntegral::
mu
¶ The range-separation parameter.
-
- class
- #include <ints.h>
Gaussian nuclear electron attraction two-center integrals.
The potential is c exp(-alpha r^2).
Inherits from GB2AttractionIntegral
Public Functions
-
GB2GaussAttractionIntegral::
GB2GaussAttractionIntegral
(long max_shell_type, double *charges, double *centers, long ncharge, double c, double alpha)¶ Initialize a GB2GaussAttractionIntegral object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
charges
-Array with values of the charges.
centers
-The centers [[C1_x, C1_y, C1_z],[…],] around which the moment integrals are computed.
ncharge
-Number of nuclear charges.
c
-Coefficient of the gaussian.
alpha
-Exponential parameter of the gaussian.
-
void
GB2GaussAttractionIntegral::
laplace_of_potential
(double gamma, double arg, long mmax, double *output)¶ Evaluate the Laplace transform of the Gaussian potential.
See Ahlrichs’ paper for details. This type of potential is used in the papers of P.M.W Gill et al. and J. Toulouse et al.:
Gill, P. M. W., & Adamson, R. D. (1996). A family of attenuated Coulomb operators. Chem. Phys. Lett., 261(1-2), 105–110. http://doi.org/10.1016/0009-2614(96)00931-1
Toulouse, J., Colonna, F., & Savin, A. (2004). Long-range-short-range separation of the electron-electron interaction in density-functional theory. Phys. Rev. A, 70, 62505. http://doi.org/10.1103/PhysRevA.70.062505
See base class for more details.
-
const double
GB2GaussAttractionIntegral::
get_c
() const¶ Coefficient of the gaussian.
-
const double
GB2GaussAttractionIntegral::
get_alpha
() const¶ Exponential parameter of the gaussian.
-
- class
- #include <ints.h>
Compute the (multipole) moment integrals in a Gaussian orbital basis. < gto_a | (x - C_x)^l (y - C_y)^m (z - C_z)^n | gto_b >.
Inherits from GB2Integral
Public Functions
-
GB2MomentIntegral::
GB2MomentIntegral
(long max_shell_type, long *xyz, double *center)¶ Initialize Moment integral calculator.
- Parameters
max_shell_type
-The highest angular momentum index suported
xyz
-The powers of x,y,z in the integrals (l, m, n).
center
-The center [C_x, C_y, C_z] around which the moment integrals arecomputed
-
void
GB2MomentIntegral::
add
(double coeff, double alpha0, double alpha1, const double *scales0, const double *scales1)¶ Add integrals for a pair of primite shells to the current contraction.
- Parameters
coeff
-The contraction coefficient for the current primitive.
alpha0
-The exponent of the primitive shell 0.
alpha1
-The exponent of the primitive shell 1.
scales0
-The normalization constants for the basis functions in primitive shell 0.
scales1
-The normalization constants for the basis functions in primitive shell 1.
-
- class
- #include <ints.h>
Base class for four-center integrals.
Inherits from GBCalculator
Subclassed by GB4IntegralLibInt
Public Functions
-
GB4Integral::
GB4Integral
(long max_shell_type)¶ Initialize a GB4Integral object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
-
void
GB4Integral::
reset
(long shell_type0, long shell_type1, long shell_type2, long shell_type3, const double *r0, const double *r1, const double *r2, const double *r3)¶ Set internal parameters for a new group of four contractions.
- Parameters
shell_type0
-Angular momentum index for contraction 0.
shell_type1
-Angular momentum index for contraction 1.
shell_type2
-Angular momentum index for contraction 2.
shell_type3
-Angular momentum index for contraction 3.
r0
-Cartesian coordinates of center 0.
r1
-Cartesian coordinates of center 1.
r2
-Cartesian coordinates of center 2.
r3
-Cartesian coordinates of center 3.
-
virtual void
GB4Integral::
add
(double coeff, double alpha0, double alpha1, double alpha2, double alpha3, const double *scales0, const double *scales1, const double *scales2, const double *scales3)¶
= 0 Add results for a combination of Cartesian primitive shells to the work array.
- Parameters
coeff
-Product of the contraction coefficients of the four primitives.
alpha0
-The exponent of primitive shell 0.
alpha1
-The exponent of primitive shell 1.
alpha2
-The exponent of primitive shell 2.
alpha3
-The exponent of primitive shell 3.
scales0
-The normalization prefactors for basis functions in primitive shell 0
scales1
-The normalization prefactors for basis functions in primitive shell 1
scales2
-The normalization prefactors for basis functions in primitive shell 2
scales3
-The normalization prefactors for basis functions in primitive shell 3
-
void
GB4Integral::
cart_to_pure
()¶ Transform the results in the work array from Cartesian to pure functions where needed.
-
const long
GB4Integral::
get_shell_type0
() const¶ Shell type of contraction 0.
-
const long
GB4Integral::
get_shell_type1
() const¶ Shell type of contraction 1.
-
const long
GB4Integral::
get_shell_type2
() const¶ Shell type of contraction 2.
-
const long
GB4Integral::
get_shell_type3
() const¶ Shell type of contraction 3.
Protected Attributes
-
long
GB4Integral::
shell_type0
¶ Shell type of contraction 0.
-
long
GB4Integral::
shell_type1
¶ Shell type of contraction 1.
-
long
GB4Integral::
shell_type2
¶ Shell type of contraction 2.
-
long
GB4Integral::
shell_type3
¶ Shell type of contraction 3.
-
const double *
GB4Integral::
r0
¶ Center of contraction 0.
-
const double *
GB4Integral::
r1
¶ Center of contraction 1.
-
const double *
GB4Integral::
r2
¶ Center of contraction 2.
-
const double *
GB4Integral::
r3
¶ Center of contraction 3.
-
- struct
- #include <ints.h>
Arguments associated with one primitive shell in LibInt conventions.
- class
- #include <ints.h>
Base class for four-center integrals that use LibInt.
Inherits from GB4Integral
Subclassed by GB4ElectronRepulsionIntegralLibInt, GB4ErfIntegralLibInt, GB4GaussIntegralLibInt, GB4RAlphaIntegralLibInt
Public Functions
-
GB4IntegralLibInt::
GB4IntegralLibInt
(long max_shell_type)¶ Initialize a GB4IntegralLibInt object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
-
GB4IntegralLibInt::
~GB4IntegralLibInt
()¶
-
void
GB4IntegralLibInt::
reset
(long shell_type0, long shell_type1, long shell_type2, long shell_type3, const double *r0, const double *r1, const double *r2, const double *r3)¶ Set internal parameters for a new group of four contractions.
See base class for details.
-
void
GB4IntegralLibInt::
add
(double coeff, double alpha0, double alpha1, double alpha2, double alpha3, const double *scales0, const double *scales1, const double *scales2, const double *scales3)¶ Add results for a combination of Cartesian primitive shells to the work array.
See base class for details.
-
virtual void
GB4IntegralLibInt::
laplace_of_potential
(double prefac, double rho, double t, long mmax, double *output)¶
= 0 Evaluate the Laplace transform of the the potential.
For theoretical details and the precise definition of the Laplace transform, we refer to the following paper:
Ahlrichs, R. A simple algebraic derivation of the Obara-Saika scheme for general two-electron interaction potentials. Phys. Chem. Chem. Phys. 8, 3072–3077 (2006). 10.1039/B605188J
For the general definition of this transform, see Eq. (8) in the reference above. Section 5 contains solutions of the Laplace transform for several popular cases.
- Parameters
prefac
-Prefactor with which all results in the output array are multiplied.
rho
-See Eq. (3) in Ahlrichs’ paper.
t
-Rescaled distance between the two centers obtained from the application of the Gaussian product theorem. See Eq. (5) in Ahlrichs’ paper.
mmax
-Maximum derivative of the Laplace transform to be considered.
output
-Output array. The size must be at least mmax + 1.
Private Members
-
Libint_eri_t
GB4IntegralLibInt::
erieval
¶ LibInt runtime object.
-
libint_arg_t
GB4IntegralLibInt::
libint_args
[4]¶ Arguments (shell info) for libint.
-
long
GB4IntegralLibInt::
order
[4]¶ Re-ordering of shells for compatibility with LibInt.
-
double
GB4IntegralLibInt::
ab
[3]¶ Relative vector from shell 2 to 0 (LibInt order).
-
double
GB4IntegralLibInt::
cd
[3]¶ Relative vector from shell 3 to 1 (LibInt order).
-
double
GB4IntegralLibInt::
ab2
¶ Norm squared of ab.
-
double
GB4IntegralLibInt::
cd2
¶ Norm squared of cd.
-
- class
- #include <ints.h>
Electron repulsion four-center integrals.
The potential is 1/r.
Inherits from GB4IntegralLibInt
Public Functions
-
GB4ElectronRepulsionIntegralLibInt::
GB4ElectronRepulsionIntegralLibInt
(long max_shell_type)¶ Initialize a GB4ElectronRepulsionIntegralLibInt object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
-
void
GB4ElectronRepulsionIntegralLibInt::
laplace_of_potential
(double prefac, double rho, double t, long mmax, double *output)¶ Evaluate the Laplace transform of the ordinary Coulomb potential.
See Eq. (39) in Ahlrichs’ paper. This is basically a rescaled Boys function.
See base class for more details.
-
- class
- #include <ints.h>
Short-range electron repulsion four-center integrals.
The potential is erf(mu*r)/r.
Inherits from GB4IntegralLibInt
Public Functions
-
GB4ErfIntegralLibInt::
GB4ErfIntegralLibInt
(long max_shell_type, double mu)¶ Initialize a GB4ErfIntegralLibInt object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
mu
-The range-separation parameter
-
void
GB4ErfIntegralLibInt::
laplace_of_potential
(double prefac, double rho, double t, long mmax, double *output)¶ Evaluate the Laplace transform of the long-range Coulomb potential. (The short-range part is damped away using an error function.) See (52) in Ahlrichs’ paper.
See base class for more details.
-
const double
GB4ErfIntegralLibInt::
get_mu
() const¶ The range-separation parameter.
Private Members
-
double
GB4ErfIntegralLibInt::
mu
¶ The range-separation parameter.
-
- class
- #include <ints.h>
Gaussian electron repulsion four-center integrals.
The potential is c exp(-alpha r^2).
Inherits from GB4IntegralLibInt
Public Functions
-
GB4GaussIntegralLibInt::
GB4GaussIntegralLibInt
(long max_shell_type, double c, double alpha)¶ Initialize a GB4GaussIntegralLibInt object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
c
-Coefficient of the gaussian.
alpha
-Exponential parameter of the gaussian.
-
void
GB4GaussIntegralLibInt::
laplace_of_potential
(double prefac, double rho, double t, long mmax, double *output)¶ Evaluate the Laplace transform of the Gaussian potential.
See Ahlrichs’ paper for details. This type of potential is used in the papers of P.M.W Gill et al. and J. Toulouse et al.:
Gill, P. M. W., & Adamson, R. D. (1996). A family of attenuated Coulomb operators. Chem. Phys. Lett., 261(1-2), 105–110. http://doi.org/10.1016/0009-2614(96)00931-1
Toulouse, J., Colonna, F., & Savin, A. (2004). Long-range-short-range separation of the electron-electron interaction in density-functional theory. Phys. Rev. A, 70, 62505. http://doi.org/10.1103/PhysRevA.70.062505
See base class for more details.
-
const double
GB4GaussIntegralLibInt::
get_c
() const¶ Coefficient of the gaussian.
-
const double
GB4GaussIntegralLibInt::
get_alpha
() const¶ Exponential parameter of the gaussian.
-
- class
- #include <ints.h>
Gaussian electron repulsion four-center integrals.
The potential is r^alpha.
Inherits from GB4IntegralLibInt
Public Functions
-
GB4RAlphaIntegralLibInt::
GB4RAlphaIntegralLibInt
(long max_shell_type, double alpha)¶ Initialize a GB4RAlphaIntegralLibInt object.
- Parameters
max_shell_type
-Highest angular momentum index to be expected in the reset method.
alpha
-The power of r in the potential.
-
void
GB4RAlphaIntegralLibInt::
laplace_of_potential
(double prefac, double rho, double t, long mmax, double *output)¶ Evaluate the Laplace transform of the r^alpha potential. See Eq. (49) in Ahlrichs’ paper.
See base class for more details.
-
const double
GB4RAlphaIntegralLibInt::
get_alpha
() const¶ The power of r.
Private Members
-
double
GB4RAlphaIntegralLibInt::
alpha
¶ The power of r.
-