3.5.4. horton.grid.int1d – 1D integration algorithms¶
-
class
horton.grid.int1d.Integrator1D¶ Bases:
object-
get_weights(npoint)¶ Return integration weights for linear grid.
-
__init__¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min= None¶ Base class for integration algorithms
-
-
class
horton.grid.int1d.StubIntegrator1D¶ Bases:
horton.grid.int1d.Integrator1D-
get_weights(npoint)¶ Return integration weights for linear grid.
-
__init__¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min= 0¶ Ordinary integration algorithm
-
-
class
horton.grid.int1d.TrapezoidIntegrator1D¶ Bases:
horton.grid.int1d.Integrator1D-
get_weights(npoint)¶ Return integration weights for linear grid.
-
__init__¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min= 2¶ Trapezoid rule integration algorithm
-
-
class
horton.grid.int1d.CubicIntegrator1D¶ Bases:
horton.grid.int1d.Integrator1D-
get_weights(npoint)¶ Return integration weights for linear grid.
-
__init__¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min= 2¶ Cubic spline integration algorithm
-
-
class
horton.grid.int1d.SimpsonIntegrator1D¶ Bases:
horton.grid.int1d.Integrator1D-
get_weights(npoint)¶ Return integration weights for linear grid.
-
__init__¶ x.__init__(…) initializes x; see help(type(x)) for signature
-
npoint_min= 8¶ Composite Simpson’s rule integration algorithm
-